Search results for "Purcell effect"

showing 2 items of 2 documents

Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires

2013

The Purcell effect dependence on the excitation power is studied in photonic crystal microcavity lasers embedding InAs/InP quantum wires. In the case of non-lasing modes, the Purcell effect has low dependence on the optical pumping, attributable to an exciton dynamics combining free and localized excitons. In the case of lasing modes, the influence of the stimulated emission makes ambiguous the determination of the Purcell factor. We have found that this ambiguity can be avoided by measuring the dependence of the decay time on the excitation power. These results provide insights in the determination of the Purcell factor in microcavity lasers. © 2013 AIP Publishing LLC.

PhysicsPhysics and Astronomy (miscellaneous)business.industryDotCondensed Matter::OtherExcitonPhysics::OpticsPurcell effectContinuous-Wave OperationCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSemiconductor laser theoryNanocavityOptical pumpingOptoelectronicsSpontaneous emissionStimulated emissionbusinessSpontaneous EmissionLasing thresholdRoom-TemperatureMicrodisk LasersPhotonic crystal
researchProduct

Purcell Enhancement and Wavelength Shift of Emitted Light by CsPbI3 Perovskite Nanocrystals Coupled to Hyperbolic Metamaterials

2020

Manipulation of the exciton emission rate in nanocrystals of lead halide perovskites (LHPs) was demonstrated by means of coupling of excitons with a hyperbolic metamaterial (HMM) consisting of alternating thin metal (Ag) and dielectric (LiF) layers. Such a coupling is found to induce an increase of the exciton radiative recombination rate by more than a factor of three due to the Purcell effect when the distance between the quantum emitter and HMM is nominally as small as 10 nm, which coincides well with the results of our theoretical analysis. Besides, an effect of the coupling-induced long wavelength shift of the exciton emission spectrum is detected and modeled. These results can be of i…

light−matter interactionMaterials scienceperovskite nanocrystalsExcitonphotonicsPhysics::Optics02 engineering and technologyDielectricPurcell effectPurcell factor01 natural sciences7. Clean energyMolecular physics010309 opticsCondensed Matter::Materials Science0103 physical sciencesSpontaneous emissionEmission spectrumElectrical and Electronic EngineeringPerovskite (structure)business.industryCondensed Matter::Otherlight-matter interactionMetamaterial021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslead halide perovskiteshyperbolic metamaterials (HMMs)Photonics0210 nano-technologybusinessBiotechnology
researchProduct